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ABSTRACT 

 

The work done here is inspired by businesses today which are increasingly dependent 

on a connected world and the real-time flow of information across systems. Since 

there is a need for proper integration of business processes we require an efficient 

messaging system. There are few customized messaging solutions available which are 

using shared memory for communication and some already existing messaging 

solutions for fast and reliable message communication but they use socket underneath 

both for communication between processes on local host or on remote hosts which 

results in somewhat overkill of time and resources used in communication for those 

on same host. To overcome such problem and to achieve maximum throughput on 

local host we aimed at using shared memory which is fastest known inter-process 

communication mechanism that would help in reducing the inter-process 

communication time on local host by implementing fast socket over shared memory. 

 

The notion here is to implement an abstraction layer that encapsulates Shared 

Memory based Communication Interface and Socket based Communication Interface 

into one Seamless Interface. The Seamless Interface would help in selecting an 

appropriate transport based on the locality of the processes. Shared memory would be 

automatically used by an application if processes on the same host need to 

communicate. If communication between processes on different hosts is required then 

socket would be used automatically. This all would be beneath our abstraction layer. 

For a programmer it would be equivalent to using any other communication library 

instead of socket interfaces. 

At this time, we do not have an equivalent solution in the market. This innovative 

solution is all set to change the way industry communicates in between processes. The 

solution tries to give communication on local host its deemed advantage. The 

resultant system shall result in an extreme low latency, and would be used by the 

commercial organizations. 
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CHAPTER – 1 

INTRODUCTION 

 

 

1.1 General Introduction 

Businesses today are increasing dependent on real-time flow of information and 

connected world. Transferring of information has no relevance if it doesn‟t reach 

destination at desired speed. Therefore, transferring of information at faster speed is 

the necessity. Especially in the financial market where a delay of even a single micro-

second could lead to loss of millions of money and could even compel the investors to 

withdraw money from the market. Hence, timely information is a growing demand of 

market. Therefore, in order to have faster communication we need to have an 

effective messaging system. 

 

A communication can takes place between processes on local host or on remote host 

through number of ways. In present market there are number of messaging solutions 

available. But all of them use sockets underneath for communication between 

processes on local host or on remote host. Shared memory is the fastest known inter-

process mechanism and there are certain solutions available in market but all those 

solutions are customized which means they are designed and used by few 

programmers to meet their own needs. There is no integrated solution available in the 

market that could encapsulate the best features of both sockets and shared memory 

into one and use them for their designated tasks. Here we aimed at proposing and 

designing a Shared Memory Transport Interface in addition to an interface that would 

actually encapsulate Shared Memory based Communication Interface and Socket 

based Communication Interface into one Seamless Interface. It would also let the user 

communicate with an ease without knowing the underlying complexities. 

  

So the main question here is do we really need an interface that would encapsulate the 

best feature of both shared memory and sockets. And the answer is definitely „yes‟, 

because this would lead to an interface that would allow programmer to use the shared 

memory for local communication and sockets for remote communication without 

knowing the complexities of underlying complex design. They would be able to use it 
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like any other library they are presently using for communication. Programmers can 

focus on their designated task without being worried about the synchronization 

problems between processes using shared memory for local communication. 

 

1.2 Background 

Shared memory has been used for the inter-process communication in many 

applications since it is the fastest known inter-process mechanism known so far but all 

these applications are customized, as we already stated. Similarly sockets are also 

used for communication between the processes on local host as well as for the 

communication between the processes on remote host. But there is no integrated 

solution available in the market that could encapsulate the best features of both 

sockets and shared memory based inter-process communication. There is a 

requirement to design a Seamless Interface that would encapsulate Socket based 

Interface and Shared Memory based Interface into one Seamless Interface to achieve 

maximum performance. The Seamless Interface would allow programmer to use the 

best features of both the worlds. Furthermore, it would automatically use Socket 

Interface if the communication between remote processes is required and if 

communication between local processes is required then in that case Shared Memory 

Interface would be used automatically. Moreover, there is also no Shared Memory 

Transport exists in market that could provide extremely well abstraction that could 

hide all complexities from user and provide a simple and easy to use interface. 

 

1.3 Shared Memory  

A shared memory is a piece of memory that is attached to the address spaces of the 

processes participating in communication. As a result, all of these processes share the 

same memory segment and have access to it. Each task or process, executes in its own 

private memory address space without knowledge of the address spaces of other tasks 

that execute concurrently [2]. Figure 1 shows two processes and their address spaces. 

The shared memory is attached to both address spaces and both Process 1 and Process 

2, can have access to this shared memory as if it‟s the part of their own address 

spaces. It looks like as if, the original address spaces are extended by attaching the 

shared memory. One process must explicitly ask for an area, using a key, to be shared 

by other processes. This process will be called a Writer Process. All other processes, 
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the Reader Processes, which know the shared area, can access it. However, there is no 

protection to a shared memory and any process that knows about its existence can 

access it freely. To protect a shared memory from being simultaneously accessed by 

several processes, a synchronization procedure is used. In short, once the memory is 

being shared, there are no checks on how the processes are using it and processes 

must synchronize access to the memory by using any of the synchronization primitive 

for example, System V semaphores etc. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Shared Memory 

 

Each newly created shared memory area is represented by a shmid_ds data structure. 

It describes the size of shared memory region, number of processes using it and other 

related information. The shmid_ds data structure would be discussed later in detail.  

 

1.3.1 Universal Method of Using Shared Memory 

Shared Memory is used to facilitate effective communication between multiple 

processes on local host. In following section we focused on demonstrating the 

communication between two processes and for this we have named two processes as 

server process and client process. In context with our proposed solution it resembles 

Writer Process and Reader Process respectively. 

 

1.3.1.1 Server Process Accountability 

The Server Process should be started before any client and performs following tasks:- 

1. Request for a shared memory with a memory key and store the returned shared 

memory ID. This is performed by calling shmget(). 

2. By calling shmat() shared memory is attached to the server's address space. 

3. If required, initialize the shared memory. 

4. Perform required task and wait for all client‟s completion. 
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5. By calling shmdt(), detach a process‟s address space from the shared memory. 

6. By calling shmctl(), remove the shared memory segment with appropriate 

command. 

 

1.3.1.2 Client Process Accountability 

The Client Process follows the following steps:-  

1. Request for a shared memory segment with the same memory key and 

remember the returned shared memory ID. 

2. Attach this shared memory segment to the client's address space. 

3. Utilize the memory. 

4. If required, detach all shared memory segments. 

5. Exit. 

 

1.4 Increasing Importance of Shared Memory Based Inter-Process 

Communication 

Shared memory technology allows arbitrary processes to exchange data and 

synchronize execution. It is the fastest form of inter-process communication 

mechanism known so far because processes do not execute any system calls into the 

kernel for sharing data between processes that are sharing the memory area. Shared 

memory allows two or more processes to share a region of memory but they must 

coordinate and synchronize their use of the shared memory between themselves to 

prevent any data loss. 

 

Shared Memory is a memory that can be concurrently accessed by multiple processes 

to facilitate communication among them and to avoid redundant copy operations. 

Since processes can access the shared memory area like regular working memory, this 

is a very fast way of communication since it eliminates unnecessary copy operations 

and context switches (as opposed to other mechanisms of IPC such as named pipes, 

sockets etc.). Therefore, for the communication between processes on local host 

shared memory is the best inter-process mechanism. And it definitely leads to faster 

communication and would certainly help those organization where real-time 

processing and fast communication is a necessity.  
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1.5 Significance of Our Proposed Shared Memory Transport 

Our proposed Shared Memory Transport is designed as a simplified transport which 

would hide the complexities involved in using shared memory by providing 

appreciable level of abstraction. It works on a concept of “Fire and Forget” because of 

the ease that it offers to user in the form of simple interfaces. This design supports 

single Writer Process and multiple Reader Processes. However, there could be 

multiple Writer threads within Writer Process. Moreover, it is a scalable design since 

there is no constraint on number of readers that can connect to Writer shared memory 

segment and size of the shared memory is also configurable according to the 

application needs.  

 

It demonstrates a true example of flexible design since it supports varying size 

multiple queues as per receiver‟s application requirement. These queues are designed 

in a circular lock-free fashion. Moreover, there is no lock between Writer and Reader 

Processes. The Writer Process can write on head_index of queue and Reader Process 

can read from tail_index of queue any time without locking queue, provided space is 

there or data are there respectively. 

 

It would result in an efficient system which would be easy to use and would be used 

by many commercial organizations with an ease and programmers would be able to 

use it as any other library without effecting their performance and delivery time. 

Moreover, use of atomic operations would substantially provide extremely low-

latency system that would perform extremely well. The details of our Shared Memory 

Transport would be discussed in Chapter-4. The Shared Memory Transport along with 

our Seamless Interface would surely result in a low-latency system and would provide 

sufficient justification to switch from socket based communication on local host to 

shared memory based communication. 

 

1.6 Importance of our Proposed Seamless Interface 

The Seamless Interface proposed and designed by us is basically used to encapsulate 

the Shared Memory based Communication Interface and Socket based 

Communication Interface. In present market there is no integrated solution available 

which is intelligent enough to identify the locality of process and initiates the 
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communication between the processes based on their locality. Our Seamless Interface 

is designed keeping in mind the growing demand for local host and remote host 

communication. But at present all existing solutions are using sockets both for 

communication between processes on local host or on remote host because of the 

flexibility and transparency provided by sockets. But sockets are not good choice for 

communication across processes on local host because communication via sockets 

involves kernel which results in more copy operations and more context switches 

which finally affect the performance of the system. 

 

1.7 Inter-Process Communication 

Inter-Process Communication (IPC) is a combination of various methods for the 

exchange of data between processes on local host or on remote host. IPC has 

traditionally been the responsibility of the kernel, but kernel-based IPC suffers from a 

problem that is its performance is architecturally limited by the cost of invoking the 

kernel [3]. 

 

1.7.1 IPC Mechanisms 

IPC mechanisms illustrate different ways of sharing information between different 

processes that are running on some operating system. A particular IPC mechanism 

can be selected based on the bandwidth and latency of communication and the kind of 

data being communicated between the processes.  

 

There are various inter-process communication mechanisms which could be used for 

communication between processes on local host or on remote host depending on the 

required scenario and features provided by different inter-process communication 

methods. 

 

1.7.1.1 Unnamed Pipes 

This IPC mechanism can be used only for related processes and it allows the flow of 

data only in one direction. In this case data is buffered from the output process until 

the input process receives it. Though it is reasonably fast, however since the kernel 

manages the inter-process synchronization hence, it performs relatively slow.  
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1.7.1.2 Named Pipes 

Named Pipe which is also known as FIFO has a specific name or a pathname name 

associated with it. It can be used for communication between related or unrelated 

processes and between the processes that are on different computers. However, even 

in this case also kernel manages inter-process synchronization hence, it performs 

relatively slow. FIFO offers only a unidirectional data channel [5].  

 

1.7.1.3 Message Queues 

Message queue is an asynchronous communication mechanism which means that the 

sender and receiver of the message need not interact with the single or multiple 

message queues, managed by kernel, simultaneously. This facilitates storing of 

messages in the queue until the receiver retrieves them. Even in this case also, kernel 

manages inter-process synchronization so the speed is limited by kernel resource 

contention. 

 

1.7.1.4 POSIX Shared Memory 

POSIX shared memory allows the exchange of data between related and unrelated 

processes through a defined area of memory, technically called shared memory. This 

doesn‟t rely on kernel for synchronization between communicating processes rather it 

is the responsibility of the application program to synchronize access on their own by 

using any of the synchronization primitives. The unrelated processes can 

communicate and share memory using any of the following ways provided by 

POSIX.1 standard:- 

1. Memory-mapped Files: A file is opened by open(). This system call returns a 

descriptor which is then mapped into the address space of the process by using 

mmap() system call. 

2. Shared Memory Objects: It uses shm_open() to either create a new shared 

memory object or to open an existing one and returns a descriptor that is then 

mapped into the address space of the process by using mmap() system call. 

 

1.7.1.5 System V Shared Memory 

System V shared memory allows the sharing of data between processes through a 

common region in memory. Processes requiring communication to exchange 

information can attach to the memory segment and gain access to the data contained 
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in the segment. However, in this case a shared memory specific data structure called 

shmid_ds is maintained and populate by kernel. Hence, it facilitates finer control as 

compare to POSIX shared memory. Moreover, it also doesn‟t rely on kernel for 

synchronization between communicating processes rather it is the responsibility of the 

application program to synchronize access on their own by using any of the 

synchronization primitives. 

 

1.7.1.6 Doors 

Doors allow a process to call a procedure in another process on the same host. A 

server process creates a door for a particular procedure available within so that other 

client processes can call that procedure.  

 

1.7.1.7 RPC 

Remote Procedure Call facilitates sharing of information between the processes on 

different hosts connected by some form of network. It allows a client process on one 

host to call a server process procedure on another host. 

 

1.7.1.8 Sockets 

The Socket interface was originally developed in BSD UNIX to provide an interface 

to the TCP/IP protocol suite [6]. Internet socket or network socket or socket is used 

for inter-process communication. A socket is one end of a two-way communication 

link between two programs running on the network.  

 

A socket address is the combination of an IP address and a port number. When the 

sockets are used for exchanging information and socket() system call is used, it 

returns a unique integer number called socket identifier or socket number.  

 

The socket identifier ensures delivery of incoming data packets to the appropriate 

application process or thread. This is the most popular interface used for the 

communication between the processes on same host or on remote host. The reason for 

this popularity is ease of usage and seamless connectivity, irrespective of location of 

target process.  
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1.8 Synchronization Primitives 

The synchronization between processes is normally needed to allow the sharing of 

data between processes or threads on same host or on remote host with an ease and 

without the lost of information. Now since our solution is meant to improve 

communication time in-between processes on same host, it makes sense to discuss the 

synchronization primitives. Following are the different ways for synchronization 

between processes:- 

1.8.1 Mutexes 

Mutual Exclusion is the most basic synchronization primitive. It ensures that if one 

process is executing the code in critical region then no other process should be 

allowed to access that critical region. Critical region basically contains the data that is 

being shared between multiple processes and actually it‟s the data that is being 

protected. If any process wishes to manipulate or access the data inside the critical 

region then it must acquire the mutex lock. 

 

1.8.2 Condition Variable 

Condition Variable which is associated with mutex is a building block of 

synchronization. Basically, it is used to synchronize processes depending on the 

outcome of some conditional test. A process waits on a condition variable if after 

acquiring a mutex lock it realizes that it needs to wait for some condition to be true. It 

can release an acquired lock and go into a sleep state in a single atomic operation. 

 

1.8.3 Read-Write Locks 

A mutex lock allows only one thread to enter a critical region. But we can allow 

multiple threads to access critical region based on following read-write locks:- 

1. Any number of threads can hold a read-write lock for reading if no other thread 

is holding the read-write lock for writing. 

2. A thread can hold a read-write lock for writing if no other thread holds the read-

write lock for reading and writing. 

 

1.8.4 Record Locking 

Record locking which is maintained by kernel can be used by related or unrelated 

processes to share the reading or writing of a locked file which is referenced through a 
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descriptor. The owner of a lock is identified by its process ID, therefore, this type of 

locking cannot be used for threads.  

 

1.8.5 System V Semaphores 

A semaphore is an IPC mechanism which provides synchronization between various 

processes or threads. System V semaphores provides a set of counting semaphores 

which means one or multiple counting semaphores per set. A set has a limitation of 

having minimum one and maximum 25 semaphores only.  

1.8.6 POSIX Semaphores 

Like System V, POSIX also provide a counting semaphore but POSIX semaphores 

mean single counting semaphore which need not be maintained in the kernel. It is 

used to synchronize processes or threads and can be of two types:-  

1. POSIX named semaphores can be used for related or unrelated processes and 

are identified by POSIX IPC names or pathnames in the filesystem. 

2. POSIX memory-based semaphores are stored in shared memory and are used 

to synchronize processes which are communicating through shared memory. 

 

1.9 Difference between a System V and a POSIX semaphore 

S.No. System V Semaphore POSIX Semaphore 

1. In System V, we can control 

how much the semaphore count 

can be increased or decreased. 

In POSIX, the semaphore count can 

be increased or decreased by 1. 

2. It allows changing the 

permissions of semaphores. 

It does not allow manipulation of 

semaphore permissions. 

3. Though it is complex from usage 

perspective but it offers finer 

control. 

It is straight-forward and simple. 

4. After creating System V 

semaphore user has to explicitly 

initialize it. 

It allows initialization and creation of 

semaphores in a single step which 

means it‟s atomic. 
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S.No. System V Semaphore POSIX Semaphore 

5. Semaphore creation is expensive 

in System V semaphores because 

it creates an array of semaphores 

when creating a semaphore 

object. 

It is not expensive since it creates 

only one semaphore. 

6. It provides a mechanism for 

system-wide semaphore. 

It provides a mechanism for process-

wide semaphores. Semaphore is 

automatically cleaned up when 

process exits. 

 

Table 1: System V Semaphore vs. POSIX Semaphore [7] 

 

1.10 Atomic Operations  

An atomic operation refers to a group of operations that are combined and appear as a 

single operation. The output of the atomic operation is either success or failure. In 

short, atomic operations are those that cannot be interrupted while accessing any 

resource like memory location. Atomic operations operate on two conditions:- 

1. If one process is executing atomic operations, no other process can execute the 

same atomic operations and cannot see the changes being made. 

2. If atomic operation fails then system‟s state is restored to original state i.e. the 

state it was in, prior to executing any atomic operation.  

 

Let us understand the concept of atomic operation with the help of trivial example. 

Consider two processes Process 1 and Process 2 are running and they both want to 

increment a value at same shared memory location:- 

 

Step 1: Process 1 reads the value in memory location. 

Step 2: Process 1 then increment the value.  

 

Process 1 suspended before writing back the incremented value in the memory 

location and Process 2 starts:-   
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Step 1: Process 2 reads the original value in memory location. 

Step 2: Process 2 increments the value.  

Step 3: The Process 2 writes the new value into the memory location.  

 

The Process 2 is suspended and the Process 1 starts:- 

 

Step 1: Now the Process 1 is unaware that Process 2 has already updated the value in 

the memory location and writes a wrong value into the memory location.  

 

From the above example it‟s clear that if we would have used atomic operation then 

reading, incrementing and writing would have been done in single step and would 

have not allowed other process to access that value if other process is already using it 

[9]. 

 

1.10.1 Common Atomic Operations 

Following are the common atomic operations which are used to maintain consistency 

in the system:- 

 

1.10.1.1 Atomic read and write 

It is an atomic operation which allows reading a memory location and writing a new 

value into it simultaneously. This operation is used to prevent race conditions in 

multi-threaded applications. 

 

1.10.1.2 Test and Set 

Test-and-Set instruction is used to set the value in a memory location but before 

setting the value it performs some test. However, the value is set irrespective of the 

result of the test. If there are multiple processes and if a process is performing test-

and-set then no other process is allowed to perform another test-and-set until the first 

process is completed. 

 

1.10.1.3 Compare and Swap 

The CPU instruction compare-and-swap is used to compare the contents of a memory 

location to a given value and, if they are same, it modifies the contents of that 

memory location to a given new value. It either returns a simple boolean response or 
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the value initially read from the memory location, to indicate the result of the 

operation. 

 

1.10.1.4 Fetch and Add 

The CPU instruction fetch-and-add is used to modify the contents of a memory 

location. It is significantly used in multi-processor systems where it‟s difficult and 

undesirable to disable interrupts on all processors at the same time. It prevents multi-

processor collision by permitting any processor to atomically increment a value in 

memory location. 

 

1.10.1.5 Load-Link / Store-Conditional 

Load-link also known as "load and reserve" and store-conditional are a pair of 

instructions that work jointly to ensure a lock-free atomic read-modify-write 

operation. Load-link returns the recent value of a memory location. A subsequent 

store-conditional will store a new value in that memory location only if no 

modifications have taken place to that location since the load-link otherwise, it will 

fail.  

 

1.11 Locking 

Critical sections are protected by locks but locks are accompanied with extra overhead 

in terms of low performance, processes have to wait until lock is released. An atomic 

operation is functionally equivalent to a lock and many computer architectures offer 

dedicated support, moreover, atomic operations are faster than locks. Program 

performance is improved, if simple critical sections are replaced with atomic 

operations for non-blocking synchronization which ensures that execution of a 

process competing for a shared resource is not postponed indefinitely by mutual 

exclusion.  

 

For example, consider two processes, P1 and P2, use a lock to access a counter 

count:- 

Step 1: lock (count) 

Step 2: count  count + 1 

Step 3: unlock (count) 
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1.12 Organization of Thesis 

The Chapter 1 INTRODUCTION provides the general introduction to what the thesis 

is all about. It also briefly summarizes the question and the reasons why it is a 

worthwhile question. It also includes a brief section giving background information 

related to this thesis work for all the intended readers. 

 

The Chapter 2 LITERATURE SURVEY describes the research or work done in inter-

process communication field. It provides details on various existing messaging 

solutions, various existing models in addition to few existing patents in this field. 

 

The Chapter 3 PROBLEM STATEMENT describes the current picture and the 

missing part. It also includes the solution to existing problem of local host inter-

process communication. The goal of this thesis work is also described in this chapter. 

 

The Chapter 4 PROPOSED SYSTEM DESIGN describes in detail the complete 

design of Seamless Interface and Shared Memory Transport along with few designed 

algorithms. 

 

The Chapter 5 CONCLUSION AND FUTURE SCOPE concludes the thesis followed 

by the future scope highlights. 
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CHAPTER – 2 

LITERATURE SURVEY 

 

This chapter describes the methods that were used to attain the final goal of the thesis 

or rather to explain the procedure. The methodology that we followed here was to 

study the existing system and find out pros and cons of prevailing techniques used for 

communication between the processes on local host and for the communication 

between processes on remote host.  

 

I discussed the present market trend with the people from industry and based on their 

comments and suggestions, I realized that there is a need to have a new messaging 

solution that can fit in this vacuum and which could fulfill the growing demand of fast 

communication between processes on local host. It was also realized that there is no 

integrated solution in market which could encapsulate the best features of shared 

memory based communication and socket based communication into one Seamless 

Interface which could intelligently select appropriate transport based on the locality of 

processes. 

 

But to design the shared memory based interface it was important to understand the 

concept of shared memory in detail especially provided by System V and POSIX, 

how it works, various important data structures, analyzing existing market trends, 

prevailing systems and other parameters related with easy designing of our proposed 

Seamless Interface and Shared Memory Transport. 

  

2.1 System V Shared Memory 

On a Solaris system, shared memory is an extremely efficient means of sharing data 

among multiple processes since the data need not actually be moved from one process 

address space to another. Shared memory leads to the sharing of the same physical 

memory (RAM) pages by multiple processes, such that each process has mappings to 

the same physical pages and can access the memory through pointer dereferencing in 

code. 
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Shared memory implementation in Solaris would be discussed in detail in subsequent 

section. In contrast with POSIX Shared Memory, System V Shared Memory supports 

the data structure shmid_ds which is maintained and populated by kernel. For each 

created shared memory segment there is an associated shmid_ds data structure. This 

data structure contains the complete information about the shared memory it belongs 

to. [10] 

 

2.1.1 shmid_ds Data Structure 

The kernel maintains a unique data structure for every shared memory segment which 

exists within its addressing space. 

 

struct shmid_ds 

{ 

 struct ipc_perm    shm_perm;  

 size_t shm_segsz;   

 size_t shm_lkcnt;   

 pid_t shm_lpid;   

 pid_t shm_cpid;   

 shmat_t shm_nattch;   

 shmat_t shm_cattch;   

 time_t shm_atime;   

 time_t shm_dtime;   

 time_t shm_ctime;   

}; 

 

Following table, describes each component of shmid_ds Data Structure:- 

 

Member 

Name 

Data type Description 

shm_perm structure ipc_perm structure maintains permission 

information.  

shm_segsz unsigned int Size of the shared segment in bytes. 
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Member 

Name 

Data type Description 

shm_lkcnt unsigned 

short 

Number of locks on the shared segment.  

shm_lpid long Last process PID, which performed a shared 

memory operation. 

shm_cpid long Shared memory creator Process PID.  

shm_nattch unsigned long Number of attaches to the shared segment.  

shm_cnattch unsigned long Number of ISM attaches to shared memory. 

shm_atime long Time of last attach to shared segment  

shm_dtime long Time of last detach from shared segment  

shm_ctime long Time of last change to shmid_ds structure  

 

Table 2: shmid_ds Data Structure [10] 

 

2.1.2 ipc_perm Data Structure 

The kernel also maintains ipc_perm data structure per shared memory segment in the 

system. It maintains information for each IPC object, similar to the information it 

maintains for files. 

 

struct ipc_perm 

{ 

 uid_t  uid; /* owner‟s user id */ 

 gid_t  gid;  /* owner‟s group id */ 

 uid_t  cuid; /* creator‟s user id */ 

 gid_t  cgid; /* creator‟s group id */ 

 mode_t  mode; /* read-write permissions */ 

 ulong_t  seq;  /* slot usage sequence number */ 

key_t  key; /* IPC key */ 

}; [11] 
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2.1.3 Interfaces Provided by System V Shared Memory 

System V shared memory is similar to POSIX shared memory. But instead of calling 

shm_open() followed by mmap(), we use shmget() followed by shmat(). Here we 

aimed at discussing all the important predefined functions in detail supported by 

System V Shared Memory. 

 

Following are the important API‟s used for System V shared memory:- 

 

System 

Call 

Arguments 

Accept 

Return Values Explanation 

shmget() key, size, oflag Shared Memory 

Identifier 

Either creates a new shared 

segment if one with a 

corresponding key does not 

exist, or access an existing one 

based on the key. 

shmat() Shared Memory 

Identifier, 

address, flag 

Starting address 

of shared memory 

segment 

Attaches shared segment to 

process address space. 

shmdt() Address of shared 

memory segment 

0 on success or -1 

on error 

Detaches a shared segment 

from a process address space 

shmctl() Shared Memory 

Identifier, 

command, status 

structure 

0 or -1 (success or 

failure) 

Use to change permission and 

other characteristics of shared 

memory segment. 

 

Table 3: System V Shared Memory APIs [10] 

 

Let us now discuss all the above mentioned APIs with their complete prototype, 

parameters and return value in detail: 
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2.1.3.1 shmget Function 

The shmget() system call is used to create a new shared memory segment if the one 

corresponding to key doesn‟t exist, or access an existing one based on the value of 

key. 

 

Prototype:- 

int shmget (key_t key, size_t size, int oflag); 

 

Parameters:- 

 The key argument is an access value associated with the semaphore ID. 

 The size argument is the size of requested shared memory segment in bytes. 

 The oflag argument specifies the initial access permissions and creation 

control flags.  

 

Return Value:- 

It returns the Shared Memory Segment Identifier on success and -1 to indicate error 

condition. It also returns the ID of an existing shared segment.  

 

2.1.3.2 shmat Function 

It is used to attach the newly created shared memory segment or an opened existing 

segment to process address space.  

 

Prototype:- 

void * shmat (int shmid, const void *shmaddr, int flag); 

 

Parameters:- 

 The shmid is a shared memory segment identifier returned by shmget function. 

It is used to recognize the shared memory segment to which the process wants 

to connect.  

 The shmaddr is a NULL pointer which allows the system to select the address 

of the shared memory segment of its own. 

 The flag indicates the access permissions. 

 



 20 

Return Value:- 

The return value from shmat is the starting address of the shared memory segment 

within the calling process and returns -1 on error. 

 

2.1.3.3 shmdt Function 

It is used to detach the shared memory segment when a process is done with it. But if 

a process terminates, all shared memory segments presently attached by the process 

are detached. But this call doesn‟t delete shared memory segment. 

 

Prototype:- 

int shmdt (const void *shmaddr); 

 

Parameters:- 

 The shmaddr is a const pointer returned by shmat() which represents the 

starting address of shared memory segment. 

 

Return Value:- 

This function returns 0 for successful execution and -1 on error. 

 

2.1.3.4 shmctl Function 

shmctl() is used to alter the permissions and other characteristics of a shared memory 

segment. But the process should have effective shmid of owner, creator or superuser 

to perform this task. 

  

Prototype:- 

int shmctl (int shmid, int cmd, struct shmid_ds *buf); 

 

Parameters:- 

 The shmid represents the effective shmid of owner, creator or superuser. 

 The buf is a structure of type struct shmid_ds which is defined in <sys/shm.h>  

 And following are the cmd options:- 
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Commands Description Permission 

IPC_STAT Return the status information 

contained in the control 

structure and place it in the 

buffer pointed to by buf.  

The process must have 

read permission on the 

segment to perform this 

command. 

IPC_SET Set the effective user and group 

identification and access 

permissions.  

The process must have 

an effective ID of owner, 

creator or superuser to 

perform this command. 

IPC_RMID Remove the shared memory 

segment. 

The process must have 

an effective ID of owner, 

creator or superuser to 

perform this command. 

 

Table 4: The ‘cmd’ argument in shmctl Function [12] 

 

Return Value:- 

This function returns 0 for successful execution and -1 on error. [12] 

 

2.1.4 Sample Program using System V Shared Memory 

The following code segment indicates simple use of shared memory between two 

independent processes. Both the processes communicate via shared memory wherein 

Process 1 accepts input from the user and Process 2 prints that input.  

 

This code throws light on “ZERO COPY” concept that is in this case because of the 

use of shared memory no copy operations were required because user enters the input 

directly on shared memory with the help of the pointer returned by shmat() function. 

 

Process 1:- 

#include <string.h>  

#include <errno.h>  

#include <stdlib.h>  

#include <unistd.h>  
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#include<stdio.h>  

#include<sys/shm.h>  

int main()  

{  

int shmid;  

key_t key;  

void *ptr;  

system ("touch help");  

key = ftok("help",0);  

shmid = shmget(key,20,IPC_CREAT);  

ptr = shmat(shmid,NULL,0);  

if((void*)-1 == ptr)  

{  

        printf("\n Eror: %s",strerror(errno));  

}  

else  

{  

        printf("Enter name\n");  

        scanf("%s",&ptr);  

        sleep(20);  

}  

return 0;  

}  

 

Process 2:- 

#include <string.h>  

#include <errno.h>  

#include <stdlib.h>  

#include <unistd.h>  

#include<stdio.h>  

#include<sys/shm.h>  

int main()  

{  

int shmid;  



 23 

key_t key;  

void *ptr;  

system("touch help");  

key = ftok("help",0);  

shmid = shmget(key,20,IPC_CREAT);  

ptr = shmat(shmid,NULL,0);  

if ((void*)-1 == ptr)  

{  

        printf("\n Eror: %s",strerror(errno));  

}  

else  

{  

        sleep(20);  

        printf("%s",ptr);  

}  

return 0;  

} 

 

2.2 POSIX Shared Memory 

Like UNIX System V, POSIX.1 also provides a standardized API for creating and 

using shared memory.  

 

Though we have already talked about POSIX shared memory in Chapter-1, now let us 

see various interfaces provided by POSIX to use the shared memory for 

communication between processes on local host. 

 

2.2.1 Interfaces Provided by POSIX Shared Memory 

POSIX shared memory is similar to System V shared memory. But instead of calling 

shmget() followed by shmat(), we call shm_open() followed by mmap(). In the 

subsequent section we aimed at discussing all the important POSIX shared memory 

interfaces in detail.  

 

Following are the important API‟s used for System V shared memory:- 
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System Call Arguments 

Accept 

Return Values Explanation 

shm_open() name, oflag, 

mode 

Non-negative descriptor 

on success and -1 on 

error 

Either creates a new 

shared memory object 

or to open an existing 

one. 

 

shm_unlink() name 0 on success or -1 on 

error 

Remove the name of a 

shared memory object. 

ftruncate() fd, length 0 on success or -1 on 

error 

Change the size of 

either a regular file or 

a shared memory 

object. 

fstat() Fd, buff 0 on success or -1 on 

error 

Use to get the 

information about 

existing shared 

memory object 

mmap() addr, len, prot, 

flags, fd, offset 

On success, starting 

address of mapped region 

and MAP_FAILED to 

indicate error condition. 

 

Maps either a file or a 

POSIX shared 

memory object into 

the address space of a 

process. 

munmap() addr, len 0 on success or -1 on 

error 

Remove the mapping 

from the address space 

of the process. 

 

 

Table 5: POSIX Shared Memory APIs [12] 

 

Let us now discuss all the above mentioned APIs with their complete prototype, 

parameters and return value in detail: 
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2.2.1.1 shm_open Function 

shm_open is used either to create a new shared memory object or to open an existing 

shared memory object. 

 

Prototype:- 

int shm_open (const char *name, int oflag, mode_t mode); 

 

Parameters:- 

 The name argument is used by any other processes that want to share this 

memory. 

 The oflag argument specifies the initial access permissions and creation 

control flags.  

 Mode specifies the permission bits and is used when O_CREAT flag is 

specified otherwise this argument would be 0.  

 

Return Value:- 

When the call succeeds, it returns the non-negative descriptor and -1 to indicate error 

condition.  

 

2.2.1.2 shm_unlink Function 

shm_unlink is used to remove the name of a shared memory object. It has no effect on 

other existing references to the shared memory object, until all references to that 

object are closed.  

 

Prototype:- 

int shm_unlink (const char *name); 

 

Parameters:- 

 The name argument indicates the shared memory object that needs to be 

unlinked. 

 

Return Value:- 

When the call succeeds, it returns the 0 and -1 to indicate error condition. 
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2.2.1.3 ftruncate Function 

It is used to change the size of either a regular file or a shared memory object while 

dealing with mmap. 

 

Prototype:- 

int ftruncate (int fd, off_t length); 

 

Parameters:- 

 The fd argument indicates the descriptor of a file or a shared memory object 

whose size needs to be changed. 

 The size of a regular file or shared memory object is set to length bytes. 

  

Return Value:- 

When the call succeeds, it returns the 0 and -1 to indicate error condition. 

 

2.2.1.4 fstat Function 

The fstat is used to obtain the information about existing shared memory object when 

we open it. 

 

Prototype:- 

int fstat (int fd, struct stat *buf); 

 

Parameters:- 

 The fd argument indicates the descriptor of an existing shared memory object 

whose size needs to be changed.  

 The *buf is the pointer to structure stat defined in <sys/stat.h> header file 

which contains information about shared memory object. 

  

Return Value:- 

When the call succeeds, it returns the 0 and -1 to indicate error condition. 
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2.2.1.5 mmap Function 

The mmap function maps either a file or a POSIX shared memory object into the 

address space of a process. Once the memory is mapped into the address space of the 

processes that are sharing the memory region they need not execute any system calls 

into the kernel for exchanging information which would otherwise be required. 

Shared memory allows two or more processes to share a region of memory. However, 

the processes must coordinate and synchronize their use of the shared memory to 

avoid data loss.  

 

We use mmap() function for three purposes:- 

 With a regular file to provide memory-mapped I/O. 

 With special files to provide anonymous memory mappings. 

 With shm_open to provide POSIX Shared Memory between unrelated 

processes. 

 

Prototype:- 

void *mmap (void *addr, size_t len, int prot, int flags, int fd, off_t offset); 

 

Parameters:- 

 The addr specifies the starting address within the process of where the 

descriptor fd should be mapped. Usually it is specified as NULL pointer 

indicating kernel to select the starting address. 

 The len represents the number of bytes to be mapped into the address space of 

the process, starting at offset (usually 0) bytes from the beginning of the file.  

 The prot argument specifies the protection of memory mapped region by using 

following constants:- 

Prot Descriptor 

PROT_READ Process can read the data. 

PROT_WRITE Process can write the data. 

PROT_EXEC Process can execute the data. 

PROT_NONE Process can not access the data. 

 

Table 6: The ‘prot’ argument in mmap Function [12] 
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 The flag argument can be specified using following constants:- 

 

Flags Description 

MAP_SHARED Modifications done by a process to the 

mapped data are visible to all the 

processes. 

MAP_PRIVATE Modifications done by a process to the 

mapped data are visible to only that 

process. 

MAP_FIXED Interpret the addr i.e. the location of 

memory mapped region. But for 

portability issues it should not be 

specified and addr should be 0. 

 

Table 7: Flags in mmap function specified by the constants [12] 

  

Return Value:- 

It returns the starting address of mapped region on success and MAP_FAILED to 

indicate error condition. 

 

2.2.1.6 munmap Function 

The munmap function is used to remove the mapping from the address space of the 

process. 

 

Prototype:- 

int munmap (void *addr, size_t len); 

 

Parameters:- 

 The addr argument is the address that was returned by mmap. 

 The len is the size of that mapped region. 

  

Return Value:- 

It returns the 0 on success and -1 to indicate error condition. [12] 
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2.3 Messaging Solutions 

A communication can takes place between processes on local host or on remote host 

through number of ways. In present market, there are number of messaging solutions 

available. But these solutions use sockets underneath for communication between 

processes on local host or on remote host. 

 

There are various messaging solutions available in market, below two are two 

dominating vendors of market in messaging solutions:- 

a) TIBCO Messaging Solutions. 

b) 29WEST Messaging Solutions. 

 

We use these two market leading vendor solutions as benchmarks against our 

solution, so let‟s first discuss them briefly:- 

 

2.3.1 TIBCO Messaging Solutions 

For many years TIBCO have been known for providing the most efficient, reliable, 

and scalable messaging solutions. TIBCO provides businesses the facility to select the 

messaging solution as per their unique set of systems, business requirements, and IT 

resources, by providing such a complete set of established and verified solutions. 

Following are the two messaging solutions provided by TIBCO:- 

 

2.3.1.1 TIBCO SmartSockets 

TIBCO SmartSockets provides outstanding performance, scalability, bandwidth 

efficiency, and fault tolerance and reliable real-time messaging using industry-

standard protocols like TCP/IP. With the use of TIBCO‟s SmartSockets APIs and 

class libraries, organization can make sure that applications distribute and exchange 

information quickly, reliably and securely across any platform and any network. 

 

Key Features 

a) Publish-subscribe for intelligent, streamlined one-to-many communications.  

b) Adaptive multicast for most efficient network utilization. 

c) Multithreaded, multiprocessor architecture for full system exploitation. 

d) Online security safeguards vital communications. 
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e) Real-time monitoring of network applications. 

f) Performance optimization for maximum throughput. 

g) Robust, enterprise-quality fault-tolerant GMD for reliable message 

delivery. [14] 

 

2.3.1.2 TIBCO Enterprise Message Service 

TIBCO Enterprise Message Service is used to manage the real-time flow of 

information by bringing together different IT assets and communications technologies 

on a common enterprise backbone. By using this solution companies have been able 

to reliably support over 50,000 messages per second and achieve 99.999% uptime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Common Backbone for Services and Real-Time Information Flow [15] 

 

Key Features:- 

1. It enables developers and administrators to support different types of service 

protocols on the same platform and adjust qualities of service for most 

demanding applications by supporting request/reply and publish/subscribe 

interactions, synchronous and asynchronous messaging, multicast deployments 

and different levels of reliable messaging capabilities. 

2. It delivers high performance and provides secure messaging solution by 

supporting security standards with the administrative control. 
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3. It also provides operational flexibility since it integrates with third-party 

relational databases. 

4. It provides built-in monitoring and management capabilities which help in 

detailed administrative functions and statistics and support automation through 

an administrative API or command-line shell. [15] 

 

2.3.2 29WEST Messaging Solutions 

It is being used worldwide for ensuring high-performance messaging for financial 

markets. Many financial institutions worldwide have replaced their legacy 

messaging systems with 29WEST messaging solutions which have resulted, in 

latency reductions of 10 times and more remarkable throughput gains. 

 

Following is one of the well-known and widely used messaging solutions provided 

by 29WEST:- 

 

2.3.2.1 Latency Busters Messaging (LBM) 

It is a fast, efficient, and lightweight messaging system aimed to serve as the 

enterprise messaging solution for the next generation of high-performance 

applications having very high message rates.   

 

Its exceptional design allows users to gain a competitive edge with the industry‟s 

fastest messaging.  

 

LBM design eliminates the need for messaging servers, routers and messaging 

daemons hence, reduces latency, increases throughput and allows data to flow 

directly from sender to receiver.  

 

The following two illustrations show messaging before and after LBM. 

 

Before LBM:-  

Prior to LBM, daemons, routers and servers were used which created messaging 

chokepoints for any type of transport used. 
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Figure 3(a): Messaging Chokepoints before LBM [17] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3(b): Messaging Chokepoints before LBM [17] 

 

With LBM:-  

LBM creates a higher throughput, application-to-application model suitable for any 

transport by utilizing the network infrastructure for message routing, 
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Figure 4: LBM Eliminates Messaging Chokepoints [17] 

 

Key Features 

LBM offers various advantages since it provides the ability to link directly with 

your application:- 

1. Reduced data copies. 

2. Reduced context switches 

3. Reduced number of processes involved in handling each message. 

4. Fewer maintenance and upgrade headaches since no new entities to manage in 

the network. [17] 

 

From above discussion it‟s very clear that to have fast communication between the 

processes on remote host these solutions are doing incredibly good. But in order to 

have equivalent faster communication between the processes on local host we need a 

better inter-process communication mechanism which is undoubtedly shared memory. 

But shared memory usage is accompanied with few limitations like extra burden on 

application program since it has to take care of synchronization between processes. 

But if we could have such library that could provide us with best of both that is 

sockets for remote communication and shared memory for local communication then 

that would help us to achieve a low latency system which is the main demand of 



 34 

growing IT industry where time means money. This library would provide a Seamless 

Interface on top that would encapsulate Shared Memory based Communication 

Interface and Socket based Communication Interface. There are few customized 

systems that are using shared memory for local communication but no such Seamless 

Interface exists which could allow user to communicate with other systems without 

being bothered about underlying complexities and required communication transport. 

 

2.4 Shared Memory Implementation in Solaris 

Shared memory is an inter-process communication facility that exists in every major 

version of UNIX available today. It is omnipresent in its use by applications 

developed for UNIX systems. On a Solaris system shared memory provides an 

extremely efficient means of sharing data between multiple processes because the 

data need not be moved from one process's address space to another. Each process 

maps to the same physical pages and can access the memory through pointer 

dereferencing in code. 

 

The use of shared memory in an application requires implementing just a few 

interfaces bundled into the standard C library, /usr/lib/libc. These interfaces are listed 

in Table 3 above. These interfaces perform many useful tasks from a kernel 

implementation standpoint.  

 

The kernel implementation of shared memory requires two dynamically loadable 

kernel modules:- 

 The shmsys module, which is located in /kernel/sys directory, contains the 

kernel support routines for the shared memory library calls (Table 3). 

 The ipc module, which is located in /kernel/misc directory, contains two 

kernel routines, ipcget() and ipcaccess(), that apply to all the inter-process 

communication (IPC) facilities. 

 

These modules are not loaded automatically by SunOS at boot time. The kernel will 

dynamically load a required module when a call is made that requires the module. 

Thus, first time an application makes a shared memory system call (e.g. shmget()), the 

kernel will load the module and execute the system call. The module will remain 
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loaded until it is explicitly unloaded, via the „modunload‟ command, or the system 

reboots. 

  

On executing ipcs command, it sometimes comes back with a message “facility not in 

system" which means the module is not loaded.  

 

# ipcs 

IPC status from as of Mon Aug 11 18:32:30 1997 

Message Queue facility not in system. 

Shared Memory facility not in system. 

Semaphores: 

# 

 

You can tell the operating system to load the module during bootup by using the 

„forceload‟ operation in the /etc/system file: forceload: sys/shmsys. We can also use 

the ‘modload’ command, which allows a root user to load any loadable kernel module 

from the command line. The ‘modinfo’ command can be used to see which loadable 

modules are currently loaded in the kernel. The SunOS is smart enough not to allow 

the unloading (modunload) of a loadable module that is in use. Moreover, the code is 

written to be aware of dependencies, such that loading the shmsys module will also 

cause the ipc module to be loaded.  

 

2.4.1 Shared Memory Tuneable Parameters 

Various resources are being maintained by kernel for the implementation of shared 

memory. For example, on successful execution of shmget() system call operating 

system initializes and maintains a shared memory identifier (shmid) which identifies a 

shared segment. It basically has two components:- 

 The actual shared RAM pages 

 A data structure shmid_ds that maintains information about the shared 

memory segment. 

 

2.4.1.1 shmmni Tuneable Parameter 

At the boot time, on the basis of shmmni, a shared memory tuneable parameter, the 

system allocates kernel memory for some number of shmid_ds structures. The 
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„shmmni’ tuneable parameter defines the requested number of unique shared memory 

identifiers the system maintains. The size of each shmid_ds structure is 112 bytes and 

has a corresponding kernel mutex lock, whose size is 8 bytes.  

 

Therefore, the amount of kernel memory required by a system to maintain shared 

memory can be computed by ((shmmni * 112) + (shmmni * 8)). For example, for the 

default value of shmmni, a system allocates (100*112) + (100*8) = 13 kilobytes 

kernel memory for shared memory support.  

 

But shmmni should not be set to a randomly large value merely to ensure sufficient 

resources since there is a limit to kernel memory that a system can support. For 

example, on Solaris 2.5, 2.5.1, and 2.6, the limit = 256 MB and on UltraSPARC 

[sun4u]-based systems, the kernel has its own 4GB address space, so it's not much 

constrained. Required kernel memory remains in RAM since the kernel is not 

pageable; this reduces the available memory for user processes. Today this may not be 

an issue since Sun ships systems with very large RAM capacities, however it should 

be considered. 

 

In order to protect itself from allocating extra kernel memory for shared memory 

support, the system, check for the maximum available kernel memory, divide that 

value by four, and use the result as a maximum value for allocating resources for 

shared memory. In simply words, the system will not allow more than 25 percent of 

available kernel memory to be allocated. But this applies to Solaris 2.5, 2.5.1, and 2.6. 

Prior releases including Solaris 2.4, has no such restriction. Moreover, newer releases 

don‟t require the extra eight bytes per shmid_ds for a kernel mutex lock because finer-

grained locking was implemented, allowing for greater potential parallelism of 

applications using shared memory.  Whereas in the earlier releases shared memory 

used very coarse-grain locking and only implemented one kernel mutex in the shared 

memory code.  

 

In order to determine system‟s kernel architecture „uname‟ command with „-m‟ option 

can be used as follows: 

% uname -m 

sun4u 
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2.4.1.2 shmmax Tuneable Parameter 

It defines the maximum size of a shared segment. The second argument in shmget() 

system call determines the size of a shared memory segment. When the shmget() call 

is executed, the kernel checks to ensure that the size argument is not greater than 

shmmax. If it is, an error is returned. Kernel resources are not allocated based on 

shmmax. Hence, even if we set shmmax to its maximum value, it does not affect the 

kernel size. This parameter can be tuned in /etc/system file entry as:- 

set shmsys:shminfo_shmmax=0xffffffff /* hexidecimal (4GB for Solaris 2.5.1, 2.6)*/ 

set shmsys:shminfo_shmmax=4294967295 /* decimal  */ 

 

2.4.1.3 shmmin Tuneable Parameter 

The shmmin tuneable defines the smallest possible size a shared segment can be, as 

per the size argument passed in the shmget() call. There's no real compelling reason to 

set this from the default value of 1. 

 

2.4.1.4 shmseg Tuneable Parameter 

It defines the number of shared segments a process can attach (map pages) to. 

Processes may attach to multiple shared memory segments for application purposes, 

and this tuneable determines how many mapped shared segments a process can have 

attached at any one time. 

Now let us look at two tuneable parameters associated with shared memory in Solaris 

10:- 

Name Description 

max-shm-memory Maximum size in bytes of a shared memory segment. When 

shmget() allocates a shared memory segment, the segment's 

size is allocated and checked against this limit. The shmget() 

fails and set errno equal to EINVAL if the size argument is 

less than the system-imposed minimum or greater than the 

system-imposed maximum. 

max-shm-ids Maximum number of shmid_ds structures system-wide. When 

shmget() allocates a shared memory segment, one ID is 

allocated. The shmget() fails and sets errno equal to ENOSPC 

if the system-imposed limit on the maximum number of 

allowed shared memory identifiers system-wide would be 

exceeded. 

 

Table 8: Tuneable Parameter Associated with Solaris 10 Shared Memory [10] 
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2.5 Facilitating Communication within Shared Memory 

Environment using Lock-Free Queues 

One of the other inventions in this field is by Rajeev Sivaram who introduced the yet 

another concept of using lock-free queues to communicate within shared memory 

environment. To improve the efficiency in communication within shared memory the 

lock-free queues are structured to reduce the use of atomic operations and the number 

of enqueue or dequeue operations. 

 

Each process has an associated lock-free data queue and free queue. The lock-free 

queue is concurrently accessible at one end for writing by multiple processes and non-

concurrently accessible at another end for reading. The concurrent operations on the 

queues are managed through atomic operations. Data queue is used to retrieve data 

from other processes. Each data queue may have zero or more entities containing a 

pointer of an element in the shared memory. The element consists of data that is to be 

communicated between processes. Similarly, the free queue includes zero or more 

entries containing a pointer of an available element. Elements that are available for 

storing data are tracked by this queue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Processing Entities in the Shared Memory 
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Figure 6: Lock-Free Queues in Shared Memory 

 

2.5.1 Queue size 

The queues are designed and sized to not reach a full condition. The queue is 

initialized before performing any enqueue or dequeue operations. For instance, int 

queue[size] is used to initialize the queue. The queues are designed not to reach full 

condition by making the size of the queue as a power of 2 which is sufficiently large 

such that the queue does not become full. This is achieved by making a queue size 

equal to the total number of elements available in the processes. For example, queue 

size for 64 processes where each can submit up to 128 on-the-fly elements, 64X128 = 

8192 is sufficient. 

 

2.5.2 Enqueue Operation 

He further used the term „slot‟ for the elements in memory. Sender process sends the 

data to receiver process by following these steps:- 

1. Sender process obtains the pointer of a slot from a sender‟s free queue data 

structure to place data. (Dequeue operation) 

2. Store data in the slot specified by the pointer. 

3. The pointer of the slot is placed on receiver‟s data queue. (Enqueue operation) 

 

A sending process enqueue an element on a receiving process data queue by placing a 

pointer of the element on the queue. Atomic operations are required for enqueue 

operations because concurrency is provided for enqueue operation that enables 

multiple processes to concurrently write to the queue. Moreover, enqueue is 
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performed using single atomic operation only once. The enqueue operation does not 

check for a full queue, since the queue is designed not to be full.  

 

To enqueue the slot on the receiver‟s message queue following steps are performed:- 

1. Atomically determining the current tail of message queue and increment the tail 

to obtain new tail by employing a single fetch_and_add operation. 

2. Place the slot index into old tail index. 

 

2.5.3 Dequeue Operation 

The receiver periodically checks its queue to determine if there are any messages. 

Following steps are performed by receiver process:- 

1. Initially, the receiver attempts to dequeue a slot from the receiver‟s message 

queue. 

2. Receiver checks whether a slot was dequeued or not. If a pointer of the slot was 

not returned by the dequeue process, then processing is complete. However, if 

the pointer was returned, then the data in the slot specified by the pointer is 

processed. 

3. Return the slot to the free queue. 

 

An element is dequeued from the data queue of receiver process when it wishes to 

access the data. An element is dequeued by retrieving a pointer from the queue. Since 

a queue is owned by single process and only that process can process the data of the 

queue therefore, non-concurrency for dequeue operation is provided. Dequeuing an 

element of the lock-free queue absent an atomic operation. It basically includes 

following steps:- 

1. A determination is made as to whether the queue is empty. If the queue is 

empty, then slot_index is set to empty indicating that there are no slots on the 

message queue. However, if the queue is not empty, then the value of the head 

of the queue is obtained. 

2. The queue head is checked next that whether it‟s empty or not. If its not empty 

then slot_index is set to queue[old_head] containing the pointer of the slot that 

has the data to be retrieved. 

3. Moreover, the queue at queue[old_head] is set to empty. 

4. The value of head is incremented to indicate the new head. 
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2.5.4 Reusing the Slots to Increase Efficiency and Performance 

Each process holds up to one extra slot that is not in its message queue or free queue. 

There will be no starvation of free slot as long as the number of free slots owned by a 

process is greater then a total number of processes. Since the total number of extra 

slots for one process can be at most the total number of processing entities 

communicating in the shared memory, and the remaining slots are returned to the free 

slot queue of the process sooner or later. 

 

2.5.4.1 Sender Reuse 

To reduce the number of enqueue and dequeue operations, the slot used by the last 

incoming message is not returned to the free slot queue immediately rather it is saved 

for the next outgoing message. In short, a pointer of the slot is saved. For example, in 

communications protocols, in general the receiver send a reply to the sender for the 

message received, so slot reuse saves one enqueue and one dequeue operation, hence, 

performance and efficiency is improved since the sender reuses the slot by placing 

data in it and enqueues the slot on the receiver‟s queue. 

 

2.5.4.2 Receiver Reuse 

The receiver dequeues a slot from its queue and processes the data in the slot. The slot 

is then saved for the next outgoing message. Then a determination is made as to 

whether there is a previous saved slot. If so, then the previous saved slot is enqueued 

on the free queue, otherwise, the processing is complete. 

 

Hence, we can conclude that to facilitate communication, lock-free queues are 

provided that minimize atomic operations, as well as dequeue/enqueue operations. 

The queues have the characteristics of not becoming full and only having concurrency 

at one end e.g., the tails for enqueue operations. By using these queues, performance 

is enhanced. Performance is further enhanced by reusing slots, thus minimizing the 

number of enqueue/dequeue operations. [20] 

 

After analyzing everything we concluded that businesses today look forward for an 

integrated solution. Today industry is dependent on already existing socket based 

solutions for message passing which is slower in case we require inter-process 

communication on local host. So we aimed at developing an integrated solution that 
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would encapsulate shared memory interface and sockets interface into one seamless 

interface. The resultant interface would automatically use shared memory for faster 

communication if processes are on same host else would use sockets for 

communication between processes on remote system. 
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CHAPTER - 3 

PROBLEM STATEMENT 

 
 

3.1 The Current Picture 

In current scenario communication plays a vital role since scalable solutions generally 

are not designed within single process. Such systems have large number of 

cooperative processes generally serving a set of services, where each service may rely 

on data from other co-operative process. This results in large amount of data 

communication need. These days data have become an integral part of any 

organizations IT Infrastructure and an organization should have access to all kind of 

data at all time.  

 

Taking into account today’s scenario we understand that data is required to cross 

process boundaries and at times be available to applications simultaneously, and this 

in turn requires efficient inter-process communication. There are various middleware 

applications available in market to server specific need of inter-process 

communication and many vendors provide various efficient messaging solutions. 

However, to our analysis till date all the existing messaging solutions are using 

sockets underneath for communication between the process on local host as well as 

for the communication between the processes on different hosts. This is a very 

obvious choice considering the flexibility sockets provide in terms of communication 

and almost no synchronization need. However, there are some solutions that use 

shared memory underneath for communication but these are a very limited set of 

highly customized solutions. These solutions as such are not really available as a 

generic communication middleware till date, though they serve specific needs very 

well. We observed that there is a desperate need in this vacuum for an integrated 

solution to be available in the market for diverse range of applications to take 

advantage from.  

 

Now that we understand there is a need for such solution, we might want to find, why 

such solution doesn’t exist? Well the answer has to lie within these two facts: 
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1. Shared memory is the fastest known inter-process communication mechanism 

along with the fact that it is one of the most complex forms of IPC to deal with. 

The complexity involved is simply too huge, like synchronization between 

processes is of atmost important and should be dealt with care while using shared 

memory for inter-process communication. 

2. Sockets on the other hand shifts all synchronization needs from programmers 

shoulder to kernel. This in itself is good enough to choose sockets over shared 

memory when dealing with complex multithreaded applications. 

Application program or the programmer should not be overburdened with the shared 

memory usage. They should be able to use shared memory as an efficient mechanism 

for communication on local host as they are using sockets. 

Sockets which are being used today for inter-process communication on local host as 

well as on remote host is though a reliable method but lack in efficiency when it 

comes to inter-process communication on local host since number of copy operations 

and context switches between processes and kernel increases resulting in low latency 

system. Though internet sockets are easy to use because of the available libraries but 

if we could provide users with an equivalent library that allow user to work with same 

ease and which is more efficient in terms of time would be far better option in 

prevailing market.  

 

3.2 The Missing Part 

As discussed earlier, there is no integrated solution available in market that could 

encapsulate the best features of shared memory and sockets so that the best possible 

efficiency can be derived from them. Moreover, to use them for their best possible 

ways to achieve maximum throughput that is to use shared memory for 

communication between the processes on local host and sockets for communication 

between the processes on different hosts.  

 

Another view worth paying attention is ‘market’ these days, which is highly sensitive 

towards ‘time to market’. In present market condition one needs to best use his time 

and resources. All the available efficiency whether of human resource or other 

resources should be used efficiently and in time efficient manner. Similarly, available 
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resource in terms of computing power and memory utilization should be put to its 

maximum efficiency so that it can be used in an effective way. And the best way to 

use this memory for inter-process communication is to use shared memory concept 

for local communication and sockets for remote communication. Though both these 

concepts already exist in market and are being used too but there is no integrated 

solution that could help an application program or a programmer to use both these 

concepts efficiently. 

 

This is the solution that best fits this vacuum. This would fill the gap of having a 

proper and efficient mechanism for IPC, that is a Seamless Interface covering both 

Shared Memory based Communication Interface and Socket based Communication 

Interface into one and help a programmer to concentrate on his designated task 

without being worried about the underlying complexities of IPC and synchronization 

in-between co-operative processes. 

 

3.3 The Solution 

The solution to above problem is to have an integrated Seamless Interface 

encapsulating Shared Memory based Communication Interface and Socket based 

Communication Interface into one seamless interface. We call it seamless because 

user would be free to use it the way he likes without being worried about underlying 

complexities and without paying attention on required synchronization between 

processes because all this would be taken care by our efficient and intelligent 

interface. 

 

Secondly, the proposed system would be inter-operable i.e. C++ Application would 

be able to communicate with a C or Java Application and vise-versa. The solution 

would be portable across various operating Systems (currently we focused on UNIX 

and LINUX variants). It would provide an efficient, consistent and maintainable 

solution in the sense that it could be used by many organizations and firms without 

making modifications.  

 

The solution would be generic and would allow all kind of organizations that deal 

with real-time flow of information to use it in an efficient manner like any other 
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library without being worried about cost involved and time required to implement. 

Once they will start using this solution, it would result in low latency system resulting 

in more accurate and timely information. This solution would be used by any financial 

institutions, Scientific Research Organizations and any other organizations without 

modifications thus ensuring consistency. We aimed at using existing APIs to design 

an efficient and error-free system. 

 

3.4 The Goal of Thesis Work 

The goal of this thesis work is to study and understand the existing inter-process 

communication mechanisms which are being used in existing market for real time 

flow of information. These includes a detailed study of various architectures designed 

and implemented by some of the well known messaging solution providers such as 

TIBCO (EMS and SmartSockets) and 29WEST (LBM) for inter-process 

communication and then design our own Shared Memory Transport and Seamless 

Interface that would encapsulate the Shared Memory based Communication Interface 

for local communication and Socket based Communication Interface for remote 

communication. 

 

This thesis would also throw light on various pros and cons of existing system and 

other related work done in this field. And finally to come up with a portable and 

scalable design that would allow programmers to use our Seamless Interface with an 

ease and with minimal complexities.  

The following considerations are to be taken into account:- 

1. The seamless interface or the library that we aimed at designing should be easy to 

use. 

2. All kind of applications that require any kind of inter-process communication 

should be able to use it and hence should be portable. 

3. It should free the programmer from any extra overhead required when dealing 

with shared memory like synchronization. Hence, no extra overhead for a 

programmer that would shorten the delivery time. 

4. The solution should not impede communication across processes written in 

different programming languages. It should provide similar flexibility in this area 

as provided by sockets based communication systems. 
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3.5 The Platform 

This thesis work concentrates primarily on analyzing the existing well-known 

messaging solution providers in market and designing a new Seamless Interface that 

would encapsulate the Shared Memory based Communication Interface and Socket 

based Communication Interface so as such no platform was required to carry out this 

thesis work. This work mainly focuses on analysis part so that correct and efficient 

solution can be designed. Besides designing a Seamless Interface, we also focused on 

designing a Shared Memory Transport with other supporting modules. All the 

designed modules and algorithms are discussed in detail in Chapter-4 for proper 

understanding of all readers. 

  

Our design in not limited to few Writer or Reader Processes but in its fully blown 

form, it’ll accommodate processes across several servers and multiple processes with 

complex connection requirements on same server. All processes operate by using the 

system which in turn seamlessly would choose in-between Socket and Shared 

Memory Transport depending on the locality of receiver process. 
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CHAPTER - 4 

PROPOSED SYSTEM DESIGN 

 

 

4.1 Conceptual Design of a Proposed System 

The proposed Seamless Interface API is designed keeping in mind the growing 

demand for fast communication of information and data between the processes. The 

desired output of this proposed system is the low latency system. The conceptual 

design of the system presents the overall architecture of the proposed system and 

would help to understand and analyze the various modules and aspects of the 

proposed system. The Seamless Interface that encapsulate both Shared Memory based 

Communication Interface and Socket based Communication Interface, takes the 

advantages of both worlds and gives us a solution that is more flexible and would be 

used by many organization which require real time processing of data. 

 

Our generic “Shared Memory Transport” which is designed taking into considerations 

the goals of this thesis work. We would analyse this transport in detail because 

without knowing about it completely we won‟t be able to get the flavour of our 

proposed system. Our proposed system would take care of synchronization between 

communicating processes and would help to share data between multiple processes 

using writer shared memory segment queues which we would be discussing in detail 

in subsequent section.  

Conceptual model will help us to see at a glance the complete architecture of our 

proposed system. It throws light on various modules and components and their proper 

arrangement which help in easy and fast communication of data between processes on 

local host. This conceptual diagram doesn‟t express in detail the procedure used by 

existing messaging system since that is out of the scope of this thesis work. The 

architecture of the complete proposed model gives accurate information about our 

Seamless Interface encapsulating Shared Memory based Communication Interface 

and Socket based Communication Interface. 
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Figure 7: Architecture of the Proposed System 



 50 

In order to have a complete and accurate picture of our proposed system it‟s important 

to first understand the systems with and without shared memory usage and the present 

communication scenario. 

 

4.2 Systems With and Without Shared Memory Usage 

In present market all the current messaging solutions as we discussed in Chapter – 2 

are using sockets for communication between processes on local host as well as on 

different hosts. But this affects the performance and slows down the communication 

speed on local host. To overcome such problem, we designed a solution that would 

take the benefits of both shared memory and sockets and would result in a low latency 

system. 

 

Before we consider about the various modules and their application in proposed 

system in detail let us also see the benefits of using shared memory for 

communication on local host. Let us take an example and show what exactly happens 

when User Process 1 communicate with User Process 2 with shared memory and 

without shared memory on local host. 

 

Without using Shared Memory on local host:- 

At application layer, we create message and write it to a buffer (1 copy operation) and 

then send it to socket which writes data from user space (area where program executes 

on RAM) to kernel space (2 copy operations). Now, Kernel thread would again write 

this data from kernel space to second user process space (3 copy operations). 

Therefore, it requires following number of copy operations and context switches:- 

1. 3 copy operations. 

2. 2 context switches. 

Using Shared memory on local host:- 

At application layer, we create message and write it to shared memory (1 copy 

operation) from where other process can access the data Therefore, it requires only 

following number of copy operations and context switches:- 

1. 1 copy operation. 

2. 1 context switch. 
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Context Switch 

User Process 1 User Process 2 

Kernel 

Context Switch 

Context Switch 

Shared Memory 

Figure 8 represents, communication between User Process 1 and User Process 2 with 

shared memory and without shared memory on local host:- 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Figure 8: Local Host 

 

In case of socket we just write data that needs to be communicated on socket. But if 

an application decides to use shared memory directly than:- 

1. It has to take care of inter-process synchronization on shared memory. 

2. And memory allocation and de-allocation on shared memory. 

 

These two problems are not trivial and there is every possibility to introduce a bug. 

Therefore, in other to solve above mentioned problems we need to have an algorithm 

that would reduce the inter-process communication time on local host by 

implementing fast socket over shared memory. That is our main notion is to provide a 

Seamless Interface that would allow transparent communication for the message 

intended for any destination. Shared memory would be automatically used by an 

application if processes on the same host need to communicate. If communication 

between processes on different hosts is required than socket would be used 

automatically. Sockets are the most robust and convenient whereas shared memory is 

fastest with a limitation that processes should be on the same host. We need to marry 

these two and come up with a solution which provides Seamless Interface on top 

providing best features of both worlds.  
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4.2.1 Communication via Various Methods 

If processes P1 and P2 are on same host and if P1 wants to communicate with P2, 

though shared memory is available however currently, sockets still seems to be a 

better choice considering the complexity involved when dealing with shared memory 

and flexibility provided when using sockets. If we remove the complexity of shared 

memory usage from application programmer than it suddenly becomes a better choice. 

However, we still have another limitation where we cannot communicate with a 

process on remote host using shared memory. 

 

4.2.1.1 Communication via Sockets 

Communication through sockets suffers from one main disadvantage and one main 

advantage. Advantage being the flexibility which means that with the help of sockets 

a process can communicate with a process on another host within a same network or 

on different network with an ease. And the disadvantage is that processes on same 

host communicate via kernel resulting in slower communication speed because of 

extra copy operations and more context switches. 

 

 

 

 

 

 

 

 

 

 

Figure 9: Communication via Sockets 

 

4.2.1.2 Communication via Shared Memory 

Shared memory offers relatively low latency, deterministic, high bandwidth inter-

process communication [22]. Communication through shared memory suffers from 

one main disadvantage and one main advantage. Advantage is the fast speed of 

communication when processes on same host communicate. And the disadvantage is 

that with the use of shared memory processes on different host cannot communicate. 
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Figure 10: Communication via Shared Memory 

 

4.2.1.3 Communication via Seamless Interface 

Communication through seamless interface has two main advantages. First, advantage 

is the fast speed of communication when processes on same host communicate using 

Shared Memory Transport. Second, advantage is that it offers high flexibility with the 

use of sockets for the communication between processes on different hosts. The 

Seamless Interface selects the Shared Memory Transport or the Socket Interface 

seamlessly that is it‟s transparent from the user and the application program. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Communication via Seamless Interface 
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At present there is no integrated solution available. Our solution and design of 

Seamless Interface would definitely result in a low latency system that would be used 

by many organizations to reduce the time required to communicate data between 

processes.  

4.3 Design Goals of Seamless Interface 

Now, if we were to architect the best possible solution for the desired “Seamless 

Interface”, it should have following features:- 

1. It should be as simpler as sockets or even more simpler. 

2. It should be as fast as shared memory on local host and as fast as using sockets for 

remote host communication. 

3. It should be seamless. User should not be bothered to know about the underlying 

transport he is supposed to use. 

4. User should be given with simple interface such as: 

transport.send (DataBuffer, TopicName) 

 

Here, the topic name could be associated with one or more processes. Topics are 

resolved to a group of one or more IP address and port number pairs. All processes 

subscribe on topics they want to receive messages from and publish to topic they want 

to send messages to. 

4.4 Algorithm for Seamless Interface 

All design goals requires us to implement transport class which would have a send 

routine accepting a „DataBuffer‟ and a „TopicName‟. 

 

Here, we assume any of the available topic resolution mechanism would be used 

which would provide us with one or more IP address and a port number pairs 

associated with that topic. To simplify the matter for now we assume, it returns just 

one IP address and port number pair. Other scenarios would be trivial once we explain 

this use-case. So now here we are with an IP address and port number pair given by 

topic resolution agent. The first step is to figure out if this IP address is same as our 

own IP address. Remember we can have multiple IP addresses for a same host. A 

simple parser which would parse output of ipconfig file and give us a set of IP 

addresses associated with our local host. So let us keep this set of IP addresses in a 
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hash table which is initialized at process start-up. So we‟ll end up doing a lookup in 

this table. If address is found we would use shared memory as underlying transport 

otherwise we would use socket as underlying transport. 

 

Step 1: User Application 1  send (DataBuffer, TopicName); 

Step 2:  ipAddr = TopicResolver (“TopicName”); 

Step 3: status = localIPaddrHashTable.lookup (ipAddr); 

             if (status == true) 

sharedMemoryTransport.send (DataBuffer, TopicName); 

else 

 socketTransport.send (DataBuffer, IP, PortNo); 

 

Now the problem boils down to writing shared memory transport and socket transport. 

Here we assume that any of the available transport would be used for socket transport 

and below we‟ll describe in detail only shared memory transport. 

4.5 Shared Memory Transport 

Shared Memory Transport would take care of inter-process synchronization while 

using shared memory and also memory allocation and de-allocation on shared 

memory. It would reduce the inter-process communication time on local host by using 

shared memory and facilitates implementation of a Seamless Interface that would 

encapsulate Shared Memory based Communication Interface and Socket based 

Communication Interface. Shared Memory Transport would be automatically used by 

an application if processes on the same host need to communicate. If communication 

between processes on different hosts is required than socket would be used 

automatically. Hence, we would require Shared Memory Transport and a Seamless 

Interface built on top of it. 

Figure 12, helps visualizing “Shared Memory Transport” and gives insight on data 

flow within the system. It is simplified to have just two processes. However, Shared 

Memory Transport should be designed to do much more, logically there is no limit on 

number of queues a process can write to or read from. Utmost care should be taken to 

maintain contention free multi process accesses. 
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Figure 12: High Level View of Shared Memory Transport 

 

Processes can share queues (similar to “Anycast-IPv6” with additional advantage of 

destination load balancing). Shared Memory Transport provides lock-free access to 

processes accessing common queue. This lock-free concept would be discussed in 

detail in subsequent sections. 

 

Shared Memory Transport should follow a layered architecture. It should be well 

abstracted, easily extendable. It should be designed to give very low latency and at the 

same time maintainability should not be compromised. It fulfils all the above 

mentioned criteria and the out come would be a well-designed low latency system. 

 

Figure 13, helps us to have a high level or broad understanding of the Shared Memory 

Transport and its components. 
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Figure 13: Shared Memory Transport Architecture 

 

4.5.1 Main Components of Shared Memory Transport 

The Shared Memory Transport architecture is divided into 3 blocks: Interface Layer, 

Device layer and Engine layer. Here, user application represents actual running 

application. Interface Layer includes all the required user interfaces, the device layer 

shows the implementation and engine layer shows the helping modules that are used 

by modules at device layer for their working. We separate interface from 

implementation to keep changes of underlying implementation transparent from the 
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application. Interfaces are most important asserts of an organization, an interface 

change can mean reworking an entire application which is not desirable. Hence, we 

keep interfaces independent of implementation. To draw an analogy you can consider 

C++ virtual base class as an interface while the derived class as an implementation. 

You can replace the entire derived class with a new derived class leaving the interface 

or base class or virtual base class intact. Interface class has all methods defined as 

pure virtual methods. If you are giving a generic transport to a wide group of 

applications then you would want to give something which is not prone to changes. 

However, you know that any solution you give is prone to changes to inculcate future 

technologies so to separate these two we give interfaces to user application and keep 

implementation to ourselves so that implementation can change and interface remain 

intact. 

 

4.5.1.1 Buffer Container 

This shall be the shared memory buffer container class. It would have abstract 

interfaces to access shared memory buffer. This abstraction would keep the changes 

to underlying system transparent from user applications. 

 

4.5.1.2 Writer Interface 

This abstract interface shall serve as the medium to write data to shared memory 

transport. This abstraction would keep user application transparent from underlying 

implementation changes. 

 

4.5.1.3 Reader Interface 

This abstract interface shall serve as the medium to read data from shared memory 

transport. This abstraction would keep user application transparent from underlying 

implementation changes. 

 

4.5.1.4 Shared Memory Data Buffer 

This class would encapsulate shared memory buffer handling specific operations and 

any of the data units. In particular, we need a buffer while serializing data. Buffer 

Container internally will use memory allocator to get a buffer from the shared 

memory for serializing data. This is basically used to increase the efficiency since the 

other option would have been to serialize in an application buffer and then later copy 
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it in a shared memory buffer. So the better option was to directly get a buffer from 

shared memory and directly using it for serializing and storing data. 

 

4.5.1.5 Shared Memory Data Writer 

This class would encapsulate methods and data member required in facilitating 

efficient multi-threaded shared memory data writing capabilities to the user 

application. This encapsulation layer is an implementation of Shared Memory Data 

Writer Container. This would contain two methods:- 

1. „IsQueueReady‟ would be used by implementation to return status of queue 

whether it is initialized or not, whether it is ready to write or not. 

2. „write‟ would be the actual interface to be used to write data on to the shared 

memory. However, write interface would accept a shared buffer container 

(shmBuffer Container) type object so actual data writing on shared memory would 

take place when you will create and populate shared memory buffer container 

object. This write method would take care of writing the object on the shared 

memory data queue. In short, writer interface will take care of writing pointer of 

memory location containing buffer, in the queue pointer. 

 

4.5.1.6 Shared Memory Data Reader 

This class would encapsulate methods and data member required in facilitating 

efficient multi-threaded shared memory data reading capabilities to the user 

application. This encapsulation layer is an implementation of Shared Memory Data 

Reader Container. 

 

It will expose interfaces to client application for registering their data call back 

functions. These call back functions would be given shared memory buffer container 

object. So the reader interface will take care of reading data from the queue, putting it 

into the buffer container object and passing it to client application call back function.  

 

4.5.1.7 Shared Memory Data Cleaner 

This class would encapsulate the functionality of shared memory garbage collector. It 

is a supportive class to implement memory allocation and de-allocator module. Its 

main usage can be explained as follows:- 
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1. If Reader Process fails before setting „used‟ in „shmDataHolder‟ Structure 

(discussed later). 

No effect 

2. If Reader Process set „used‟ and fails or kills before setting „finish‟ in 

„shmDataHolder‟ Structure. 

In this case if Writer Process tries to write at that location, it will find that 

„finish == false‟ and „used == true‟ which means some other process is using 

that location. In that case writer will skip this location and goes to next 

location and performs same task. This will result in many unused skipped 

holes. 

 

Therefore, there would be other cleaner thread in a writer process which traverses 

through all the queues of Writer Process checking the timestamp (user can configure 

expire timeout externally) and cleaning up any of the expired data from the queues. 

Here, expired data is the one, whose „used == true‟ and „finish == false‟. Cleaner 

thread would clean this slot and hence, there would be a loss of only 1 unit of data. In 

contrast to RT Server, which has queues of size 50MB which drops completely if 

client disconnects and in case of sockets also, if socket disconnect, data in socket 

buffer will also be cleaned. 

 

Algorithm for Cleaner Thread in Writer Process:- 

if (timestamp_time + expire_time < current_time) 

Data not expired 

else 

Data expired 

Perform cleaning operation 

 

4.5.1.8 Memory Allocator  

Memory Allocator would be used by application to allocate memory within shared 

memory segment and send to „Shared Memory Data Writer‟ to write. The shared 

transport will implement a two stage memory allocation: Shared Memory External 

Memory Allocator and Shared Memory Internal Memory Allocator. The concept is 

in-line with operating system implementation of malloc() and free() in the sense that 

malloc() maintains application specific heap in form of a data structures, allocates and 
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de-allocates from within. If need be requests from the operating system‟s memory 

allocator for extra heap space by may be using brk() or sbrk() system calls. Similarly 

this external memory allocator would be used by buffer container module to get 

memory. This memory in-turn would be requested by external memory allocator from 

internal memory allocator which would be implemented as a fixed sized block 

allocator. So in effect every request to internal memory allocator would return a fixed 

size block. If the application will require more space then external memory allocator 

would request for another block from internal memory allocator. 

 

4.5.1.9 Shared Memory Data Queue 

Shared Memory Data Queue would be the actual storage area, where the Writer 

Process would write and from where Reader Process would read. The queue is 

designed to optimize single Writer and multiple Readers. This design is inline with 

the fact that every Writer would have its own shared memory segment to write to and 

multiple Reader processes would connect to the queue. Multiple Readers access the 

queue in a lock-free fashion by using atomic CAS operations. Every element within 

this queue is of type „shmDataHolder‟ where every holder would contain pointer to 

data with other control information which would be discussed in detail in subsequent 

section. 

 

4.6 Shared Memory Transport Design Details 

Shared memory technology allows processes to exchange data and synchronize 

execution. It is the fastest form of inter-process communication mechanism known so 

far because the memory is mapped into the address space of the processes that are 

sharing the memory region and then processes do not execute any system calls into 

the kernel in passing data between processes. Therefore, for the communication on 

local host shared memory is the best inter-process communication mechanism.  

 

Our Shared Memory Transport design would definitely lead to faster communication 

and would certainly help those organizations where real-time processing and fast 

communication is a necessity. But efficient implementation of shared memory 

requires proper coordinate and synchronize between processes that are using shared 

memory for communication.  
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Our proposed Shared Memory Transport is a simple transport which would hide the 

complexities involved in using shared memory by providing a layer of abstraction. It 

provides a convenient and easy interface to be used by users.  

 

This design supports single Writer Process and multiple Reader Processes. However, 

there could be multiple Writer threads within Writer Process. Moreover, it is a 

scalable design since there is no constraint on number of Readers that can connect to 

Writer shared memory segment and size of the shared memory is also configurable 

according to the application needs.  

 

It offers a flexible design since it supports varying size multiple queues as per 

receiver‟s application requirement. These queues are designed in a circular lock-free 

fashion since there is no lock between Writer and Reader Processes. Writer Process 

would write on head_index of queue and Reader process would read from tail_index 

of queue any time without locking queue, provided space is there or data are there 

respectively. Moreover, use of atomic operations would substantially provide 

extremely low-latency system that would perform extremely well. 

 

Inputs to the Shared Memory Transport are the data and the IP address-port number 

pair i.e. send (DataBuffer, TopicName). So the transport should some how be able to 

send this data to a queue which is in shared memory and is read by the recipient i.e. 

the Reader process. 

  

To enable this, following operations are performed by Writer and Reader Processes:- 

1. Every Writer Process has a shared memory writer component. This component 

creates a shared memory segment and initializes data queues for reader groups 

(one or more readers) within this component. 

 

2. Every Reader Process has a reader component which connects to shared memory 

segments of all writers that it intends to read from. Within those segments it 

connects to its queue. Whenever some data arrives it sets „used == true‟ in 

„shmDataHolder‟ structure atomically and starts reading. Once reading is finished 

it sets „finish == true‟ in „shmDataHolder‟ structure so that the writer can clean it. 
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3. Reader/Writer synchronization is done with semaphore. Writer after writing data, 

signals on a semaphore on which reader is waiting. Every reader connects to its 

queue in writer segment and waits on its queue named semaphore. This 

semaphore can be signalled by either of the writers. On the receipt of signal reader 

iterates through all its queues in various writer segments and processes data found 

there. 

 

In figure 14, Writer after writing to queue Q1 will signal to Q1 semaphore. All writers 

would signal to this common counting semaphore if the request is for a reader waiting 

on unique queue id Q1. If multiple writers signal simultaneously, the counting 

semaphore will increment. This is how synchronization would be done between 

Writer and Reader Processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Simple Connection Diagram between Writer Processes and Reader 

Processes in Shared Memory 
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4.6.1 Other Design Challenges with Solutions 

 

4.6.1.1 UNICAST 

Our Shared Memory Transport design would support Unicast which means one 

Reader Process would be associated with 1 queue only. MULTICAST is not 

supported by this design though it can be considered as future scope of this work; 

multicast basically means multiple readers reading from same location. 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: UNICAST Supported Design 

 

4.6.1.2 ANYCAST 

Our Shared Memory Transport design would also support Anycast which means 

multiple readers can access a particular queue but a particular location in queue would 

be accessed by one reader only. 

 

 

 

Figure 16: ANYCAST Supported Design 

 

There is another scenario where multiple readers can be connected to the same queue 

and either of them would receive data (true load balanced).  In the diagram below 

though a queue has a unique id (Q1-Q2) but still Reader1 and Reader2 which are 

connected to this queue would consider it as two separate queues.  
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Here Reader1 and Reader2 share the queue as well as semaphore. On receipt of signal 

either of the readers would wakeup and read the data exactly same as single process 

connected would have done. True load balancing would be achieved here since 

whichever process will be ready goes to „wait‟ of semaphore and hence is signalled. 

In event of both processes are ready and waiting, only one of them would receive the 

signal and hence, process the data. In short, if there are multiple readers waiting on 

same semaphore, they all will go to „wait‟ of semaphore and when the Writer Process 

will signal, either of the reader waiting would be signalled and will process the data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Multiple Readers Connecting Same Queue (ANYCAST) 

 

4.6.1.3 Process as a Writer and Reader Both 

It is not necessary that a process can be either Reader or Writer. A process can be 

Reader and Writer both.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Process as a Writer and Reader Both 
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4.6.1.4 No lock between Writer and Reader Process 

Writer Process or Reader Process never waits. As per this design there is no lock 

between Reader and Writer process, in the sense, that no common mutexes between 

these two. Anyone can read or write at any time provided data is there and space is 

there. This is accomplished by having only one Writer Process and multiple Reader 

Processes architecture. Moreover, Writer is designed to write on head_index and 

Readers are designed to read from tail_index atomically. 

 

4.6.1.5 Readers accessing queues in lock-free fashion 

When queues are shared between Readers then queues become accessible to multiple 

Readers in a lock-free fashion. All readers share the same volatile tail accessible 

through header of the corresponding queue. The tail is incremented automatically 

using CAS (compare and swap) CPU instruction. No reader process would be blocked 

and all will access current tail atomically. 

 

4.7 Writer Process Module 

Each Writer Process has a shared memory segment associated with it. And this shared 

memory has one or more queues. Each queue has a corresponding port number 

associated with it. This port number represents the corresponding Reader which is 

associated with that particular queue. Moreover, synchronization between processes is 

also achieved by giving unique name to semaphore, same as the queue id and the 

Reader Process waits on this semaphore and Writer Process signal on this semaphore. 

head_index is the one end of queue which always points to current location to write 

data. This head_index is always an empty location where writer can write. 

 

After writing, „Data Writer‟ sets „used == false‟ and „finish == false‟ in 

„shmDataHolder‟ structure. When reader starts reading this unit, it sets the „used == 

true‟ and after consuming data sets „finish == true‟. This queue is implemented in a 

circular way. When Writer Process comes back to same location and finds „finish == 

true‟ then it calls „free‟ of memory allocator module to free the memory being used by 

data. Each queue in Writer shared memory segment contains a „Queue Header‟ 

associated with it. This Queue Header is basically a data structure containing 
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information like address of header pointer, tail pointer and queue registration data 

array.  

 

 

 

 

Figure 19: Writer Process in Shared Memory Segment 

 

4.7.1 Algorithm for a Writer Process 

Step 1: Verifies if reader is alive, using „Heart Beat Maintenance‟ module. 

Step 2: Writes data at head_index of queue and then increment. 

if (head_index + 1 == tail_index) 

 Queue full 

 Wait 

else 

if (ptr == 0)  

/* pointer in shmDataHolder structure, if its „0‟ it means no data at this location 

and Writer can write */ 

    Write 

    Increment head_index 

else if (finish == true) 

 Delete old data       /* call free() of memory allocator */ 

    Write 

    Increment head_index 

else       /* Data is there but not used by any Reader */ 

    Increment head_index (skip hole) 

Step 3: Signals on semaphore.   

 

4.7.2 Heart Beat Maintenance Module 

„Queue Registration Data‟ is a structure which contains heart beat or a time stamp of a 

Reader Process. This is an important module to avoid Writer Process to write in that 

queue which doesn‟t have corresponding Reader Process. If a Writer Process is 

writing in a queue whose corresponding reader does not exists then in that case there 
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would be memory overflow and unnecessary wastage of CPU time by Writer Process. 

To avoid that and to inform Writer Process about the existence of Reader Process this 

module is really helpful.  

 

This module can be explained with an example. Say, every Reader Process needs to 

time stamp its presence after every 20ms in shared memory. And Reader Process 

current time = 10ms. Therefore, before writing anything in a queue every Writer 

Process should check for following condition:- 

WT – RT > 20 

Where, 

 WT = Writer Current Time 

 RT = Reader Current Time 

And constant 20 represents the worst case. After which Writer Process can be 

sure that Reader Process doesn‟t exists any more. 

 

4.8 Reader Process Module 

It‟s the responsibility of a Reader Process to connect to the corresponding Writer 

shared memory segment. Reader performs an atomic increment, that is, it takes two 

parameters current tail_index and next tail_index and return incremented tail_index. 

tail_index always points to „ready to read‟ location from where a Reader can read. 

 

4.8.1 Algorithm for a Reader Process 

Step 1: Waits on a semaphore. 

Step 2: Checks if the data is available (head != tail) 

then  

Atomically increment the tail and read data from original 

tail_index. 

 else     /* head_index == tail_index) */ 

Queue empty, iterate to next queue pointer in ready queue until 

all queue pointers in ready queue are checked and then goto 

Step 1. 
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Each Reader Process has two threads associated with it Thread 1 and Thread 2. 

Thread 1 is a „Reader Manager‟ and Thread 2 is a „Reader Main‟. 

 

 

 

 

 

 

 

Figure 20: Reader Process in Shared Memory Segment 

 

4.8.2 Reader Manager Thread Module 

Reader Manager Thread which we also call a connection manager is responsible for 

creating a connection with all possible Writers segments on the same host and adds 

the queue address to a ready queue which in turn would be used by Thread 2 to read 

data from. 

 

It is also accountable for creating a ready queue with pointer to different shared 

memory queues. Ready queue is nothing but a circular queue that contains the 

pointers or address to the connected queues. 

 

Additionally Reader Manager Thread has the responsibility to timestamp its presence 

by populating „Queue Registration Data‟ structure and then maintaining heart beat or 

time stamping through out the connection period to indicate its presence. This would 

be taken care off by „Heart Beat Maintenance‟ module discussed before. 

 

4.8.3 Reader Main Thread Module 

This thread keeps on iterating through the ready queue which contains the pointer to 

corresponding writer queues to know when the data arrives in write queue so that it 

can read it. But this results in „Busy Waiting‟ condition which can be avoided by 

using semaphores. So its main responsibilities are:- 

1. Iterates through ready queue. 

2. Reads data when it arrives. 
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4.8.3.1 Algorithm for Reader Main Thread Module 

While iterating ready queue 

if (head == tail) 

 no data, goto next field in ready queue. 

else 

 read data from tail and increment tail. 

 

Figure 21 shows the connection between Writer and Reader Process along with the 

Reader Process Threads with the ready queue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Threads in Reader Process 

 

4.8.4 To avoid Busy Waiting in Ready Queue of Reader 

1. All Writer and Reader Manager try to create same semaphore. However, in „Non-

exclusive‟ mode which means that create semaphore if it doesn‟t exist otherwise 

connect to the existing semaphore. 

2. All writer signals on same semaphore and Reader wait on same semaphore. 

3. As soon as Writer writes data on queue it signals the Reader so that it can read the 

data from that queue. 
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4.9 Shared Memory Design 

The entire shared memory segment is divided into number of blocks where each block 

performs an important function and contributes in efficient functionality of an entire 

shared memory segment.  

 

4.9.1 Writer Process Role 

It‟s the responsibility of the Writer Process to create a shared memory segment. After 

creating shared memory segment it writes 0x00000000 in first 8 bytes of first 8K size 

of block of that segment. These 8 bytes represents „Signature‟ of the shared memory 

segment which is used to verify that shared memory segment is correct and can be 

used for further processing. After writing 0x00000000 in first 8 bytes Writer Process 

writes 0xAA55AA55 at that very location again to indicate the shared memory 

segment has created all the required queues and it‟s ready to be worked upon by the 

Reader Process. This concept of initializing memory location with 0xAA55AA55 has 

been picked from operating system boot sector signature. 

 

Following are the snapshots of shared memory segment at different steps:- 

 

Step 1: On creating shared memory segment  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22(a): Shared Memory Segment – First Block 
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Step 2: Immediately after creating shared memory segment and writing 0x00000000 

to first 8 bytes of the first block of size 8K. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22(b): Shared Memory Segment – First Block 

 

Step 3: After creating all the required queues in the shared memory segment and when 

it‟s ready to be used by Reader Process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22(c): Shared Memory Segment – First Block 
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4.9.2 Reader Process Role 

It‟s the responsibility of the Reader Process to connect to the shared memory segment 

and after connecting it checks the first 8 bytes of that particular shared memory 

segment. If its other then 0xAA55AA55, it will wait else will start reading. 

 

The remaining part of first block is reserved for the future use which can be used to 

implement more control functions to have a better control over shared memory 

segment or for other future requirements. 

 

Now, in the shared memory segment next 4K size of block is reserved for 1024 blocks 

of 4 bytes each. Each block contains the starting address of each queue header in the 

shared memory. This particular design of shared memory support 1024 blocks only, 

which seems to be sufficient number of queues in the shared memory. 

 

Initially when shared memory segment is created at that time each of these blocks will 

be initialized with „0‟. After creating queues these blocks are initialized with 

addresses of queue headers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Shared Memory Segment – Second Block 
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4.10 Space Efficient Lock-Free Virtual Queue Design 

The queue design is closed to virtual queue but not really a virtual queue. Every queue 

is designed as a fixed length virtual array where length of array is equivalent to the 

amount of data the complete shared memory segment can support. The queues are 

designed as fixed size circular queue and asserts are used to identify queue empty and 

queue full conditions.  

 

Following are the Main Asserts:- 

1. Reader Process Assert or Queue Empty  

if (rear == front) 

2. Writer Process Assert or Queue Full 

if (rear == front + 1) 

3. The increment of indices happens in following way:- 

if (index == max_index-1) 

  index = 0; 

else 

   index++; 

The next important block of shared memory segment whose size is variable and 

depends on the arguments that we pass through environment variable can be 

represented as follows:- 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Shared Memory Segment – Third Block 
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Figure 25, represents pointer to actual data in the shared memory. Each shared 

memory data unit which is basically a data structure whose data members would be 

discussed later has a pointer which points to a memory location that contain data 

which is inserted by Writer Process to be consumed by Reader Process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Shared Memory Segment – Fourth Block 

 

Every queue is an array of data holder units. Here, every data holder unit is a structure 

with following data members:- 

 

struct shmDataHolder 

{ 

 bool used; 

 bool finished; 

void * offsetPtrData; 

time_t timestamp; 

}; 

 

Size of above structure = 1 + 1 + 1 (alignment padding) + 1 (alignment padding) + 4 + 

4 = 12 Bytes. 
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We are using the concept of data holder unit and using a pointer in it to point to actual 

data. Since placing the data at that very location would waste lot of space and would 

not allow Writer to share the data space in between data queues which otherwise 

makes the sharing possible and hence, space efficiency is increased tremendously. 

 

Now, say user has specified following data through environment variable:- 

 

QUEUE_SIZE_LIST = 25,500:26,600:99,100 

 

This is a „:‟ separated list of ‟,‟ separated pairs which is read by Writer Process. Each 

pair represents QueueId and number of elements in that queue. 

 

e.g. In above QUEUE_SIZE_LIST, following three queues are specified:- 

1. Queue Id = 25 and Number of elements = 500. 

2. Queue Id = 26 and Number of elements = 600. 

3. Queue Id = 99 and Number of elements = 100. 

 

Size of data holder unit 1 whose QueueId is 25 = 12 * 500 = 6000 Bytes. 

 

Apart from the space reserved for the queue elements i.e. 6000 Bytes, another chunk 

of memory is allocated to store „Queue Control Information‟ or „Queue Header‟ 

structure which is as follows:- 

 

struct queueHeader 

{ 

 unsigned int head_index; 

 unsigned int tail_index; 

 unsigned int max_index; 

 shmDataHolder * offsetPtrDataHolderArray; 

mutex_t tail_mutex; 

}; 

Note: Any pointer which is stored in shared memory is offset pointer to get actual 

pointer. You have to add offset address and base address to get actual address. 
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Reader performs following calculation in constant time to calculate its queue 

address:- 

 

unsigned * arrPtr = baseAddress + 8K; 

myQueueAddr = arrPtr[queueId]; 

 

Now, Reader Process can read and process the data from the address stored in 

myQueueAddr. 

 

4.11 Generic Serialization and De-serialization Module 

4.11.1 Serialization by Writer Process 

Generic Serialization Module is used to serialize any application data structure into a 

character buffer terminated by „\0‟. It implements this by storing function pointer 

variable that stores the address of application serialization function at application 

start-up (while initializing transport). 

 

Each application implements its data structure serialization function, which accepts a 

“void pointer”, a “pointer to buffer” and “size of buffer”. This function is used while 

registering serializer function with the transport. The process is known as 

“Registering Serialization Function Pointer with Transport”. 

 

Step 1: 

Send the address of serialization function to the generic serialization module. In turn, 

it stores the address of that function in its pointer variable. This step is important 

because function name can be different across applications. 

 

Step 2: 

When data arrives, get buffer from shared memory and call the registered serialization 

function pointer. This step is performed to get data serialized into shared memory 

buffer. 
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This can be explained with following example. Consider an Application 1 which has 

following structure and a serialization function which returns void * and then the 

application can type-cast it, into required type. 

 

struct emp 

{ 

 char name[10]; 

 int salary; 

char address[20]; 

}; 

 

void * fun1 (void *abc, char *buff, int buff_size); 

{ 

return (snprintf(buff, buff_size, “%d%f”, (money *)abc -> i,  (money *)abc -> 

j)); 

} 

 

Note: Prototype of serialization functions in both applications should be same. And 

same goes for de-serialization function. 

 

4.11.2 De-Serialization by Reader Process 

Generic De-Serialization Module is used to de-serialize any data buffer received from 

Shared Memory Transport into application data structure. It implements this by 

storing application de-serialization function pointer registered with transport by 

application at application start-up (while initializing transport). 

 

Each application implements its data structure de-serialization function, which accepts 

a “pointer to buffer” and returns a newly created application data structure pointer as a 

“void pointer”. This function is used while registering de-serializer function with the 

transport. The process is known as “Registering De-serialization Function Pointer 

with Transport”. 

 

Step 1: 

Receive buffer from writer queue. 



 79 

Step 2: 

Call the registered de-serialization function pointer with shared memory buffer as 

argument. 

 

Step 3: 

Accept de-serialized application data structure pointer in the form of a void pointer as 

return value from de-serialization function pointer. 

 

This can be explained with following example. Consider an Application 2 which has 

following structure and a de-serialization function which returns void * and then the 

application can type-cast it, into required type. 

 

struct emp 

{ 

 char name[10]; 

 int salary; 

char address[20]; 

}; 

 

void * fun2 (const char *buff) 

{ 

struct emp temp; 

 sscanf(buff,%d%f”,&temp -> i, &temp -> j); 

return temp; 

}   

 

The complete process of serialization and de-serialization can be explained with the 

help of following diagram which provides the insight of the complete proposed 

system in addition to various supporting modules. This diagram show in detail that 

how the DataBuffer and TopicName is provided by the application to Seamless 

Interface and then how that information is processed to form a buffer and finally how 

the recipient get that information converted again from buffer to actual data. This 

diagram clearly represents all the intermediate steps necessary in carrying out desired 

task. 
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Figure 26: Diagram Elaborating Serialization and De-Serialization Modules 
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4.12 The Final Picture 

Our conceptual model and its solution is designed keeping in mind all the existing 

messaging solutions and the design goals of our thesis work.  

 

The complete solution consists of two main modules:- 

 Seamless Interface 

 Shared Memory Transport 

 

Both these modules work together and with the help of other supporting modules like 

Writer Process Module and Reader Process Module etc. to achieve the final goal of 

our proposed system.  

 

Each Writer module has its own shared memory with multiple queues and each queue 

in turn has its own port number associated with it. It is the responsibility of Reader‟s 

Process Manager Thread to connect to the Writer Process shared memory segment. 

Each Reader is associated with one unique port number within a host and has two 

threads for managing connection and for reading data from Writer queues when it 

arrives. Synchronization is the important part of shared memory concept and in order 

to handle it gracefully and without effecting system performance counting 

semaphores are the best option. 

 

Our Seamless Interface and Shared Memory Transport would together lead to an 

efficient messaging solution that would be used by many commercial organizations to 

have low latency system. The above design and algorithms makes it clear that our 

proposed system would definitely result in an effective low latency system which is 

the demand of current industry.  
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CHAPTER - 5 

CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

Today all IT organizations or any other business, require communicating and 

exchanging data. And the focus is on saving time in processing and accessing data. 

All the major messaging middleware solutions today are using sockets underneath for 

communication between processes on local host or for communication on different 

hosts.  

Shared memory is the fastest known inter-process communication mechanism for 

communication between processes on local host. Hence, in order to increase the 

effectiveness in terms of communication time between processes on local host we 

aimed at designing an algorithm. This effort resulted in an end to end design solution 

that would reduce the inter-process communication time on local host by 

implementing fast socket over shared memory. This design when implemented would 

not only reduce the communication time between processes on local host but would 

also provide Seamless Interface on top which would hide the underlying complexities 

from the user and would provide simple to use and efficient interface that could be 

used by any organization. 

The notion here is to provide a Seamless Interface encapsulating Shared Memory 

based Communication Interface and Socket based Communication Interface into one 

API which is finally achieved by designing effective algorithms. The Shared Memory 

based Interface would be automatically used by API, if processes in question for 

communication are on the same host otherwise legacy Socket based Interface will be 

used. We also discussed and designed an efficient Shared Memory Transport 

Interface. 

At present there is no integrated solution available to do similar job. And our solution 

would result in an API which is time efficient, still generic enough to be used by a 

large variety of commercial applications be it a web server or a high availability real-

time server. We target this solution to commercial organizations as their future 

messaging solutions for communication. 
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5.2 Future Work 

Businesses today look forward for an integrated solution. Today industry is dependent 

on already existing socket based solutions for message passing which is slower in 

case we require inter-process communication on local host. Our solution of providing 

Seamless socket like “low latency” interface over shared memory would definitely 

help businesses and IT organizations to have fast communication between processes 

on local host.  

 

I got a chance to discuss this with people from industry, I asked them why weren’t 

they using Shared Memory for local communication, and their simple answer was 

“additional complexity involved in its implementation which reduces maintainability 

and affects deliverable time”. Then I asked how good it would be to have a solution 

that could integrate both sockets based messaging solution and shared memory based 

messaging solution, and provide a seamless API for data transmission. Now the 

answer was quite as expected, “if it’s simple enough and safe to use, we would be 

more than happy to use it”. 

 

Looking at above, the future scope of this work is that this design can be implemented 

and integrated with already existing messaging solutions whether it’s TIBCO’s 

SmartSockets or TIBCO’s Enterprise Message Service or 29WEST LMB solution or 

may be any other messaging solution. 

In nut shell we can say that it can be married with any industry standard 

communication library with a minimal effort and will provide great advantages.  
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